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Abstract. Arbitrary superpositions of any two optical coherent states are investigated as realizations of
qubits for quantum information processing. Decoherence of these coherent-state qubits is described in
detail, and visualized using a suitable adaptive Bloch-sphere. The entanglement that can be created by a
beam splitter from these states is quantified, and its decoherence behavior is analyzed.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states;
quantum state engineering and measurements – 03.65.Ud Entanglement and quantum nonlocality (e.g.
EPR paradox, Bell’s inequalities, GHZ states, etc.) – 03.67.-a Quantum information

1 Introduction

Coherent states are the most classical of the quan-
tum states of a radiation field. Quantum superposi-
tions of two distinct coherent states are therefore of-
ten called “Schrödinger cats”, referring to the famous
gedanken experiment [1]. Typical examples are the even
and odd coherent states, introduced by Dodonov et al. [2].
Schrödinger cats have been prepared in microwave cavi-
ties [3], on motional quantum states of trapped ions [4],
and there are proposals for preparation of a single-mode
radiation field in such states [5–8].

The superpositions of coherent states have interesting
physical features [9]. Two coherent states are never or-
thogonal, and their superpositions form a two-dimensional
Hilbert-space. Thus given two fixed coherent sates one
may represent a qubit. This opens the possibility of us-
ing coherent states for quantum information processing
(QIP) [10–13].

In QIP applications it is necessary for all superpo-
sitions of the computational basis states to be robust
against decoherence. The decoherence of Schrödinger cats
was extensively studied, primarily in terms of nonclassi-
cal features and phase-space distributions [14–20]. In this
paper we give a full description of the decoherence prop-
erties of the coherent-state superpositions, from the spe-
cial point of view of a qubit representation. We visualize
the evolution of these states on a suitably defined Bloch
sphere.

a e-mail: janos.asboth@uibk.ac.at

The most important resource of QIP is quantum en-
tanglement. In quantum optics a possible way to create an
entangled state of two modes of light field is letting a sin-
gle mode interfere with another mode in vacuum state on
a beam splitter. The so available entanglement is strongly
related to the nonclassicality of the initial state of the
field [21,22]. We examine coherent-state superpositions
from this aspect. We explicitly calculate the amount of
entanglement that can be created from any single-mode
coherent-state superposition using a beam splitter. The
entangled states generated this way are termed “two-mode
Schrödinger cats” or “entangled coherent states”.

Once entanglement is generated, it is very important
to know how much it will be deteriorated due to environ-
mental decoherence. The facet of the fidelity of telepor-
tation [10] and the negativity [11] have already been sub-
jects of studies in the specific case of an entangled coherent
state with maximal entanglement. A physically informa-
tive measure is the entanglement of formation, calculated
by Li and Xu [20] for a class of entangled coherent states
also during their decoherence. We extend these studies
to two-mode entangled states resulting from arbitrary su-
perpositions of two coherent states. In this way we treat a
wider class of two-mode states. A simple picture emerges
regarding the fraction of entanglement left in the state.

This paper is organized as follows: in Section 2 we
introduce coherent-state qubits and the Bloch sphere
as used throughout the paper. In Section 3 our results
concerning decoherence of a single coherent-state qubit
are presented. Section 4 describes the creation of
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entanglement from these states using a beam splitter, and
how this is affected by decoherence. In Section 5 our re-
sults are summarized and the conclusions are drawn.

2 Coherent-state superpositions as qubits

Throughout this paper we examine superpositions of co-
herent states of single mode light fields:

|Ψ〉 = c1 |α1〉 + c2 |α2〉 (1)

where c1 and c2 are complex numbers, and |αk〉 denotes a
coherent state. With fixed α1 and α2, a two dimensional
Hilbert space is spanned by these superpositions, thus the
system realizes a quantum bit. We rewrite the state |Ψ〉
with the Weyl displacement operator D̂ as:

|Ψ〉 = D̂(β)
(
c1 eiχ |α〉 + c2 e−iχ |−α〉) , (2)

using β = (α1 + α2)/2, α = (α1 −α2)/2, and χ = Imβα∗.
The following notation is used for the overlap of the con-
stituent coherent states |α1〉 and |α2〉:

〈α1|α2〉 = a e−2iχ; a = exp
(
−2 |α|2

)
. (3)

When discussing decoherence of these states, we have to
consider mixtures of coherent-state superpositions of the
form (1). The states constituting the mixture have the
same coherent-state amplitudes α1 and α2, but different
probability amplitudes ci. The density operator of such a
mixture reads:

�̂ =
∑

k

pk |Ψk〉 〈Ψk|

= �00 |α1〉 〈α1| + �01 |α1〉 〈α2|
+�10 |α2〉 〈α1| + �11 |α2〉 〈α2| ,

∑

k

pk = 1. (4)

The coefficients ck in equation (1) and �km in equation (4)
can be written in a vector and matrix form, respectively:

|Ψ〉 � c =
(

c1

c2

)
; �̂ � � =

(
�00 �01

�10 �11

)
. (5)

Notice that the basis vectors |α1〉 and |α2〉 are not orthog-
onal, therefore c and � are not a state vector and a density
matrix in the usual sense. Their normalization is:

|c1|2 + |c2|2 + 2aRe
(
c∗1c2e

−2iχ
)

= 1, (6)

�00 + �11 + 2aRe
(
�10e

−2iχ
)

= 1. (7)

If, however, |α| � 1, then a � 1, and |α〉 and |−α〉 are
almost orthogonal, therefore their use as computational
basis states results in only small errors. This allows ef-
fective quantum computation as described by Jeong and
Kim [12] and analyzed by Ralph et al. [13]. It is also possi-
ble to stick to the nonorthogonal coherent-state basis and
take into account the nonzero overlap a by introducing a

metric tensor Gik = 〈αi|αk〉, as in [23]. In this article we
follow a different approach, by choosing an appropriate
orthogonal basis.

In the β = 0 case the symmetric and antisymmetric
superpositions

|±〉0 = (N±)−
1
2
( |α〉 ± |−α〉) (8)

play a special role. Here N± = 2(1 ± a) are normaliz-
ing factors. These were called “even” and “odd” coher-
ent states by Dodonov et al. [2], since their Fock state
decomposition consists of states with only even, or odd
number of photons. It follows immediately that they are
orthogonal, and thus form an orthonormal basis in the
two-dimensional Hilbert space spanned by the coherent
states |α〉 and |−α〉. Displacing these states by D̂(β) we
obtain an orthogonal basis we call “qubit basis” in what
follows:

|±〉 = D̂(β) |±〉0 = (N±)−
1
2
(
e−iχ |α1〉 ± eiχ |α2〉

)
. (9)

On this basis, pure states are represented by vectors y and
mixed states by matrices σ as usual:

|Ψ〉 = y1 |+〉 + y2 |−〉 ;
�̂ = σ00 |+〉 〈+| + σ01 |+〉 〈−|

+σ10 |−〉 〈+| + σ11 |−〉 〈−| . (10)

To link the nonorthogonal coherent-state |±α〉, and the
orthogonal qubit |±〉 basis, we introduce the non-unitary
transformation matrix T:

T =
1
2




eiχ (N+)

1
2 e−iχ (N+)

1
2

eiχ (N−)
1
2 −e−iχ (N−)

1
2





�

T−1 =




e−iχ (N+)−

1
2 e−iχ (N−)−

1
2

eiχ (N+)−
1
2 −eiχ (N−)−

1
2



 . (11)

The following relations link the two representations of a
given pure or mixed state:

y = Tc, σ = T�T†; c = T−1y, � = T−1σT−1†,
(12)

where T† is the adjoint of the matrix T. We remark that
the transformation matrix T is the “square root” of the
metric tensor, in the sense that T†T = G.

2.1 Bloch sphere

The matrix σ introduced in (10) is the density matrix of a
two-level system expanded on the orthonormal basis |±〉.
This allows us to use the standard Bloch-sphere picture,
as depicted in Figure 1. We write

σ =
1
2

(
1 + P3 P1 − iP2

P1 + iP2 1 − P3

)

(13)
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Fig. 1. The Bloch sphere of mixtures coherent-state superpo-
sitions. The classicality line is the set of points representing
states that are mixtures of coherent states.

where the real numbers P1, P2 and P3 are the pseudospin
components. The positivity of σ implies (P1)2 + (P2)2 +
(P3)2 < 1. Thus the pseudospin components representing
the state define a point inside a unit 3-dimensional sphere,
the Bloch sphere.

Pure states lie on the surface of the Bloch sphere, and
can be parametrized with the polar angles θ and φ:

|Ψ〉 = cos
θ

2
|+〉 + eiφ sin

θ

2
|−〉 . (14)

The north pole is |+〉, the south pole |−〉. The two con-
stituent coherent states |α〉 and |−α〉 lie on the surface
of the Bloch sphere north of the equator, they both have
polar angle θ = cos−1(a), and their azimuthal angles are
φ = 0 and φ = π, respectively. The set of “classical states”,
i.e. statistical mixtures of coherent states lies on the line
connecting the points |α〉 and |−α〉. We call this set, given
by P2 = 0 and P3 = a, the classicality line. If |α| � 1,
then a � 1, and the classicality line goes almost through
the center of the sphere, the state with highest entropy. If
|α| � 1, then a ≈ 1, and the classicality line is practically
at the North pole. This is easily understood, since in the
limit as α → 0, the even and odd coherent states tend to
the |0〉 and |1〉 Fock states, respectively.

It should be noted that the Bloch sphere is introduced
for a fixed coherent amplitude. For a decohering state,
the decrease of the coherent amplitude will change the
notion of the Bloch sphere itself. This leads naturally to
the adaptive Bloch sphere, discussed in Section 3.

3 Decoherence of a coherent-state qubit
on the adaptive Bloch sphere

In quantum optics a lossy transmission line, e.g. an optical
fiber is usually modeled by a series of beam splitters. This
simple model is an appropriate description for most practi-
cal situations. Throughout this paper we use the standard
description of the beam splitters (see e.g. Refs. [24,25]).

The almost transparent beam splitters are placed with
a density appropriate to the loss rate of the fiber. At the
other input ports of each of these impinges the “environ-
ment”, which at optical frequencies can be approximated

as the vacuum state. The resulting state is obtained by
omitting the output in the environment modes (i.e. trac-
ing out in these degrees of freedom).

The series of beam splitters can in this case be replaced
by a single one, whose transmittance η then depends on
the fiber length L. Note that there are cases, e.g. when
modeling phase-sensitive reservoirs, when this is not pos-
sible [26]. Such a beam splitter, of transmittance η mod-
els a lossy fiber with loss rate γL and length L such that
η = e−γLL. Introducing γ = cγL decoherence can be trans-
lated to time dependence η(t) = e−γt.

It can be easily verified that the above model of loss is
equivalent to solving the master equation

d�̂

dt
=

γ

2
(
2â�̂â† − â†â�̂ − �̂â†â

)
(15)

describing the time evolution in the interaction picture of
a damped harmonic oscillator at zero temperature [27].
Here â and â† are the annihilation and creation operators
of the oscillator, which in our case is a mode of the optical
field.

Starting from a mixture of coherent-state superposi-
tions of the form (4), a straightforward calculation shows,
that the state emerging from the lossy fiber reads

�̂(t) =
�00 |α′

1(t)〉 〈α′
1(t)| +c(t)∗�01 |α′

1(t)〉 〈α′
2(t)|

+c(t)�10 |α′
2(t)〉 〈α′

1(t)| + �11 |α′
2(t)〉 〈α′

2(t)| .
(16)

Here we have introduced the the damped coherent ampli-
tudes α′

i(t) =
√

η(t)αi, and

c(t) =
〈√

1 − η(t)α1|
√

1 − η(t)α2

〉
= a1−η(t)e−2iχ(1−η(t))

(17)
is the overlap between the environment’s share of the two
coherent states. Equation (16) follows from the mere fact
that coherent states interfere on the beam splitter as clas-
sical amplitudes. Alternatively it may be derived directly
from the solution of the master equation of the process
given in reference [27]. Note that the decohered state is
of the form (4) too, albeit with new coherent amplitudes
α′

i(t). As seen above, decoherence is readily described in
the nonorthogonal coherent-state basis where the basis
vectors “follow” adaptively the time evolution of the state.
In what follows, we denote this evolution by operator D:
�(t) = D(�). This evolution formally resembles a phase
damping channel [28,29], but one should keep in mind,
that the basis is nonorthogonal. In the special case if
�00 = �11 = 1, �01 = �10 = −1, we regain the results
for the decoherence of a displaced odd coherent state con-
sidered in [10].

Decoherence has a simple form in the nonorthogonal
“comoving” coherent-state basis where the basis vectors
are |α′

i(t)〉. However, this basis becomes less and less or-
thogonal with time. It is of some interest to examine how
the parameters describing the state in a suitable orthog-
onal basis change with time. Describing decoherence on
a “comoving” qubit basis |±〉 can be done in three steps:
(1) revert to the coherent state basis, (2) let decoherence D
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act, (3) revert to a new qubit basis. This can be put suc-
cinctly as follows:

σ −→ T(t)D(T−1σT−1†)T−1†(t), (18)

where the time argument t indicates that the T ma-
trix (11) corresponding to the decreased amplitudes
α′

i(t) =
√

η(t)αi is to be used.
Following the procedure outlined in the previous para-

graph, we have derived the explicit results from (16) for
the pseudospin components P1, P2 and P3 of an arbitrary
state. We obtain the following path on an adaptive Bloch
sphere:

P1(t) =

√
1 − a′(t)2

1 − a2
P1(0), (19)

P2(t) =
a

a′(t)

√
1 − a′(t)2

1 − a2
P2(0), (20)

P3(t) = a′(t)
1 − (a/a′(t))2

1 − a2
+

a

a′(t)
1 − a′(t)2

1 − a2
P3(0). (21)

The time dependence appears through the running overlap
a′(t), defined as in equation (3):

a′(t) = aη(t) = exp(−2 |α|2 e−γt). (22)

In equations (19–21), Pk(0) denotes the original, and Pk(t)
the decohered values.

The effect of decoherence appears in two distinct ways.
On one hand, equations (19–21) allow us to follow the
time evolution on the Bloch sphere of the state due to
decoherence. On the other hand, decoherence does not
only change the position of the point respective to the
Bloch sphere, but also the meaning of the sphere itself by
decreasing the coherent amplitudes. The qubit description
should be interpreted in this “comoving” frame. While
the movement on the Bloch sphere is a “rather quantum
mechanical” feature of the qubits, the modification of the
notion of the sphere describes the “classical loss”, that
is, the decay of a coherent state, which simply loses its
amplitude. This description resembles to some extent the
interaction picture of quantum mechanics, where both the
reference frame of the Hilbert space and the state vector
move, due to conceptionally different reasons.

The presented exact results allow us to quickly arrive
at the usual solutions in two limiting cases. If |α| � 1, the
constituent coherent states are nearly orthogonal, and the
state is a real Schrödinger’s cat. If we let α → 0, the state
obtained becomes a mixture of superpositions of displaced
Fock states D̂(β) |0〉 and D̂(β) |1〉 (the differences in de-
coherence dynamics in these two limiting cases, in con-
nection with squeezing, photon-number distributions and
Wigner functions have been analyzed in reference [18]).

In the highly nonclassical large amplitude case
a/a′(t) decays fast and exponentially. This can be seen
by expanding the factor e−γt in (22) to first order
in t, valid for t � 1/γ. The overlap a′(t) then be-
comes: a′(t) ≈ a exp(2 |α|2 γt), causing a/a′(t) to decay

with the familiar characteristic time

tdec =
1

2γ |α|2 . (23)

For large α, evidently tdec � 1/γ, and so the above ap-
proximation is self-consistent, giving the decay time to a
good approximation. As seen from (19–21), the exponen-
tial decay leads to the fast reduction of P2 and P3 to 0. On
the Bloch sphere, the point representing the system falls
onto the P1 axis, which coincides with the classicality line
in the large amplitude limit. This is a typical feature of the
phase damping channel: the superposition becomes a sta-
tistical mixture, conserving the probability weights. The
time scale of this process is inversely proportional to the
“distance” of the coherent states, as often seen in decoher-
ence processes. On a larger time scale, a′(t) itself increases
due to the decay of the coherent amplitude, and this in-

duces the decrease of
√

(1 − a′(t)2)/(1 − a2) from 1 to 0.
The characteristic time for this non-exponential damping
process can be found from (19–21),

tdamp =
log |α|2

γ
. (24)

In the small amplitude, α < 0.1 case we find to a good
approximation:

P1(t) ≈
√

η(t)P1(0), (25)

P2(t) ≈
√

η(t)P2(0), (26)

P3(t) ≈ 1 − η(t) + η(t)P3(0). (27)

In these we recognize the formulae describing the spon-
taneous decay of a two-level system. With β = 0, in the
small amplitude case the basis states become the Fock
states |0〉 and |1〉. The physical picture of decoherence is
then that the single photon the mode contains leaks at
an exponential rate from the optical fiber. A nonzero β
means a displacement initially applied to the state, which
has no influence on the density matrix in the orthogonal
basis. In this case there is a single characteristic time,

t1 = 1/γ. (28)

The characteristic time is independent of α in the small α
limit.

4 Creation of entangled coherent states
on a beam splitter, and their decoherence

4.1 Quantification of entanglement

For a pure quantum state |Ψ〉12 of two modes the usual
measure of quantum correlations is the entropy of entan-
glement. This is the von Neumann entropy of the reduced
density operator of either one of the subsystems,

E( |Ψ〉12) = −Tr1 [(Tr2 |Ψ〉12 12〈Ψ |) log (Tr2 |Ψ〉12 12〈Ψ |)] .
(29)
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For a pure state of two qubits, this can be written as:

E( |Ψ〉12) = H

(
1 +

√
1 − C2

2

)

. (30)

Here H(x) = −x log(x) − (1 − x) log(1 − x) is the binary
entropy function, and C = 2

√
Det (Tr1 |Ψ〉12 12〈Ψ |), the

so-called concurrence, is related to the determinant of the
reduced density operator. Both the concurrence C and its
square C2 are useful entanglement measures themselves,
reasonably approximating the entropy of entanglement.

For mixed states, the question of entanglement is more
Byzantine. The entanglement of formation [30] is defined
as the least expected entanglement of any ensemble of
pure states realizing the mixed state in question. This is
not equal to the distillable entanglement [30], the asymp-
totic number of pure singlets that can be prepared locally
from the mixed state by entanglement purification proto-
cols [31,32]. Although these have straightforward phys-
ical interpretation, they are in general not possible to
calculate.

The mixed states investigated in this article, however,
are interpreted as states of two qubits. Thus, as remarked
in [20], their entanglement of formation can be evaluated
with the method of Wootters [33]. Wootters has shown
that for a mixed state of two qubits, the entanglement of
formation is still given by the formula at the right-hand
side of (30), albeit the concurrence C now has a differ-
ent interpretation. It can be expressed in terms of the
eigenvalues λk (in decreasing order) of the non-Hermitian
operator �̂ ˜̂�, where the tilde denotes the “spin flip” oper-
ation:

C(�) = max{0, λ1 − λ2 − λ3 − λ4}. (31)

The Wootters formula is exact, and can be efficiently eval-
uated numerically.

4.2 The beam splitter as an entangling device

Consider a beam splitter described by real transmission
and reflection coefficients, whose the transmittance is de-
noted by ξ. As already exploited, coherent states interfere
as classical amplitudes, thus if at the input ports there are
coherent states, two coherent states appear at the output
ports:

|µ〉1 |λ〉2 → |
√

ξµ +
√

1 − ξλ〉3|
√

1 − ξµ −
√

ξλ〉4. (32)

Here indices 1 and 2 refer to the input modes, while 3 and
4 to the output modes, respectively. The output two-mode
state is manifestly separable, a sign of the classicality of
the coherent state [21]. If, however, one of the input fields
is a coherent-state superposition, while the other input
field is in the vacuum state, it follows directly from the
linearity of the beam splitter transformation that the state
emerging from the beam splitter,

(c1 |α1〉1 + c2 |α2〉1) |0〉2 →
c1|
√

ξα1〉3 |
√

1 − ξα1〉4 + c2|
√

ξα2〉3 |
√

1 − ξα2〉4, (33)

is not separable. In the following, we will examine this
“recipe” for producing entanglement on a beam splitter.
Since the vacuum |0〉2 has a rotationally invariant Wigner
function, our choice of a beam splitter with real parame-
ters does not decrease generality.

Before going into the details, we mention the fact that
Weyl displacement of input modes of a beam splitter re-
sults in displacement of the output modes. The displace-
ment constants for the output modes are given as the
beam splitter transforms of the input displacements. Now
since the displacements at the output ports are local uni-
tary operations, they do not affect the amount of entan-
glement in the two-mode output state. This means that
the entanglement between the output modes cannot be
changed by displacing the input modes. This simplifies the
calculations: we can displace the input state (1) by −β,
and then compute the entanglement it generates.

The amount of entanglement between the two output
modes of the beam splitter is readily computable, notic-
ing that each of the modes 3 and 4 examined alone is in a
mixed state of the form in equation (4). The output modes
can then be treated as qubits, meaning that a two-qubit
state leaves the beam splitter. The entanglement between
the modes is therefore never more than 1 ebit, and de-
pends on the probability amplitudes c1, c2, the coherent
amplitude α, and the transmittance ξ. As is expected in-
tuitively, the amount of entanglement is highest for a sym-
metric beam splitter (ξ = 1/2). A surprising fact is that
|−〉 leads to 1 ebit of entanglement irrespective of α and β,
as noted in reference [10].

We therefore set ξ = 1/2, and pose the question,
how much entanglement we can generate from a mixed
coherent-state qubit as in equation (4) (given σ) by “halv-
ing” it on a beam splitter. Although we are dealing with
pure states at this stage, we have performed calculations
for general mixtures in the Bloch sphere picture. The den-
sity matrix of the two-mode state in the qubit basis reads:

σ(34) =
1
2










σ00
(1+

√
a)2

1+a σ01
1+

√
a√

1+a
σ01

1+
√

a√
1+a

σ00
1−a
1+a

σ10
1+

√
a√

1+a
σ11 σ11 σ10

1−√
a√

1+a

σ10
1+

√
a√

1+a
σ11 σ11 σ10

1−√
a√

1+a

σ00
1−a
1+a σ01

1−√
a√

1+a
σ01

1−√
a√

1+a
σ00

(1−√
a)2

1+a










.

(34)
If the input state is pure, so is the output, and its entan-
glement can be quantified by the entropy of entanglement.
To evaluate this we need to trace over mode 4 in (34) to
obtain the reduced density matrix of mode 3,

σ(3) =
1
2




1 +

√
a

1+a (1 + P3) 1√
1+a

(P1 − i
√

aP2)

1√
1+a

(P1 + i
√

aP2) 1 −
√

a
1+a (1 − P3)



 ,

(35)
where Pi are the pseudospin components of the original
one-mode state σ. The square of the concurrence can
be evaluated from σ(3) as a function of the pseudospin
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Fig. 2. The entanglement of states obtained by splitting a
coherent-state qubit on a 50:50 real beam splitter. The entropy
of entanglement is plotted against the angles θ and φ specifying
the superposition, for (a) α = 0.1, (b) α = 0.5, (c) α = 1, and
(d) α = 2.5.

components of the input state:

C2 =
1

(1 + a)2
(
1 + a2 − (P1)2 − a2(P2)2 − 2aP3

)
. (36)

From this, according to equation (30) we obtain the en-
tanglement that can be produced from a pure coherent-
state superposition with given pseudospin components. In
Figure 2 this is plotted for four different values of α as
a function of the initial parameters θ and φ defined in
equation (14).

In the “highly nonclassical” regime, a � 1, and there-
fore C2 ≈ 1 − (P1)2. This shows that to have a large
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Fig. 3. Symmetric decoherence at the output ports of a 50:50
beam splitter is equivalent to decoherence with the same rate
at the input port.

amount of entanglement, P1 should be 0. Since in this
regime the P1 axis coincides with the classicality line, this
implies that the state should have an equal weight of |α〉
and |−α〉 in it. In this case |α〉 and |−α〉 are approximately
orthogonal, and so
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is approximately the Schmidt decomposition.
In the small amplitude, |α| � 1 limit, a ≈ 1, and

therefore we can approximate the square of the concur-
rence (36) as: C2 ≈ 1/4(2− (P1)2 − (P2)2 − 2P3), which is
obviously maximized for P3 ≈ 1. This, in the small ampli-
tude case, is just the single-photon Fock state |1〉, showing,
as expected, that for a superposition of |0〉 and |1〉 to gain
maximum entanglement we have to suppress the vacuum
as much as possible.

4.3 Decoherence and loss of entanglement
in two-mode entangled coherent states

We now turn our attention to the effect of loss on the
entanglement. Each of the modes leaving the beam split-
ter are subjected to decoherence due to loss in a way de-
scribed in Section 3. In the general case, the loss rates
γL for the two modes are different. After changing to the
proper orthogonal basis in each of the modes, as described
in Section 2, we can still treat the two-mode partially de-
cohered state as a two-qubit state. This allows us to use
the Wootters formula, and calculate explicitly the entan-
glement of formation. For the sake of further simplicity
we consider the case of symmetric decoherence, i.e. we set
the decoherence rates γL equal for the two output modes.

If the decoherence rates in modes 3 and 4 are equal,
then, as illustrated in Figure 3, creating the two-mode
state first and then letting decoherence act, or letting the
qubit decohere first and then using the beam splitter, leads
to exactly the same state [25]. Our calculations thus have
a double interpretation. They can either be read as de-
scribing the loss of entanglement in a two-mode entangled
coherent state, or as the loss of some nonclassical property
of a one-mode coherent-state superposition, making it less
useful for creating entanglement.

We have evaluated numerically the entanglement of
formation for different initial parameters, as a function
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Fig. 4. The loss of entanglement due to decoherence. For en-
tangled two-mode coherent states with the same initial ampli-
tude α = 3.5 but different superposition weights c1 and c2,
in (a) plot the fraction of the original entanglement left after
some time t during which the state suffers decoherence. In (b)
we show the dependence of the characteristic time TE of entan-
glement loss on the coherent amplitude α, in a log-log plot. The
slashed line is the constant value TE ≈ 0.61 attained for small
α, the slashed-dotted line is the function 1/(3γ |α|2), which
describes the behavior of TE in the large amplitude limit.

of decoherence time. We have found that the entangle-
ment of formation decays exponentially with time. The
characteristic time TE of the loss of entanglement is ap-
proximately independent of the initial state’s θ and φ,
especially for large α, as illustrated in Figure 4a. There
is a strong dependence of this characteristic time, how-
ever, on the coherent amplitude α, shown in Figure 4b.
In the asymptotic cases of α � 1 and α � 1, the entan-
glement decay time TE is proportional to the decoherence
times found in Section 3, in equations (28, 23). The con-
stant of proportionality is somewhat different in the small
and large α case, being 0.61 for the first and 0.66 for the
second.

The following conclusions can be drawn regarding the
loss of entanglement due to decoherence. First, the loss
of entanglement is independent of the superposition am-
plitudes c1 and c2 of the coherent states. After a certain
time t a fixed ratio of the original entanglement is lost,
and this ratio depends only on t and the original coherent

amplitude α. From this, two conclusions can be drawn. If
for a given coherent amplitude α a specific pure superpo-
sition is q times better for entanglement production than
another one with different probability amplitudes, then
this ratio remains valid after any amount of decoherence
as well. Secondly, the time scale for the loss of entangle-
ment in the two-mode state is similar to the decoherence
time for the original one-mode state from which it was
produced, differing by a factor of approximately 2/3.

A few remarks concerning the role of the displace-
ment (Eq. (2)) of a coherent-state superposition are in
order. As discussed above, such displacements do not in-
fluence the amount of entanglement that is generated from
the state on any beam splitter. This is also the reason
why they do not influence the decoherence time scale of a
coherent-state superposition. For states with β = 0, i.e.,
c1 |α〉+ c2 |−α〉, the nonclassicality, and the entanglement
generated from the state, are destroyed by decoherence
during the same time duration, which is required for one
photon to be lost. Roughly on may claim that a lost pho-
ton (or, as it be, the fact that no photon was lost) con-
tains essentially all information about the state. This is
of course not true after displacement by β: the decoher-
ence time remains the same, but the number of photons
lost during that time can be substantially higher or lower.
States with very high β are superpositions of semiclassi-
cal states whose nonclassicality survives the loss of many
photons.

5 Conclusions

The superposition of any two coherent states can be used
to represent a qubit. The qubit’s value (i.e., its state) is
distorted due to decoherence processes. We have provided
a full description of the effect of a lossy transmission line
on a superposition of arbitrary two coherent states. We
have introduced the adaptive Bloch sphere to discuss the
quantum effects of the so arising decoherence, and have
derived the exact expressions describing the trajectory of
the system.

An advantage of the coherent-state qubit is that en-
tanglement is easily created on a beam splitter. We have
calculated the amount of entanglement that can be pro-
duced from an arbitrary qubit state by splitting it on a
beam splitter, and have investigated the effect of decoher-
ence on the resulting entangled state. We have found that
entanglement is lost on the time scale of decoherence of
the initial qubit. Moreover, entanglement is lost uniformly:
given the overlap between the constituent coherent states,
the percentage of the entanglement (of formation) remain-
ing in the state after some decoherence is independent of
the phases and the moduli of the probability amplitudes.
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